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Equivalence of frans paths in ion channels
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We explore stochastic models for the study of ion transport in biological cells. Analysis of these models
explains and explores an interesting feature of ion transport observed by biophysicists. Namely, the average
time it takes ions to cross certain ion channels is the same in either direction, even if there is an electric
potential difference across the channels. It is shown for simple single ion models that the distribution of a path
(i.e., the history of location versus time) of an ion crossing the channel in one direction has the same distri-
bution as the time-reversed path of an ion crossing the channel in the reverse direction. Therefore, not only is
the mean duration of these paths equal, but other measures, such as the variance of passage time or the mean
time a path spends within a specified section of the channel, are also the same for both directions of traversal.
The feature is also explored for channels with interacting ions. If a system of interacting ions is in reversible
equilibrium (net flux is zero), then the equivalence of the left-to-right trans paths with the time-reversed
right-to-left trans paths still holds. However, if the system is in equilibrium, but not reversible equilibrium,

then such equivalence need not hold.
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I. INTRODUCTION

A biological cell interacts with its surrounding medium
through its membrane, which acts as gatekeeper between the
interior and exterior of the cell. The membrane is a lipid
bilayer that is essentially impermeable to ions, so that the
transport of ions between the interior and exterior of the cell
takes place through channels formed by proteins. The trans-
port of ions through these channels plays an important role in
the function of the cells and hence in many processes of
biological interest. Ions diffuse and drift through an aqueous
pore as they move from a bath of one concentration to a bath
of another concentration. Ions diffuse from regions of high
concentration to regions of low concentration according to
Fick’s law [1,2] in the absence of electric fields. They drift
due to electric fields caused by fixed charges in the channel
walls, charges from the other ions in the channel, the dielec-
tric properties of the channel, and the transmembrane poten-
tial, according to Ohm’s law [1,2].

The modeling of ion transport in solutions through chan-
nels is an area of intense research due to its complexity and
importance. Among the most common approaches in this
area one can find molecular dynamic simulations [3-8],
Brownian dynamics simulations [3—13], reaction-rate models
[2,3,14,15], and Nernst-Planck (NP) electrodiffusion models
[2-5,7,8,14—18]. This paper uses discrete-state models for a
one-dimensional channel, along the lines of both the
reaction-rate and NP electrodiffusion theories, to represent
the dynamics of ion diffusion across a channel between two
baths.
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The main focus of this paper is a symmetry between ions
traversing a channel in one direction and ions crossing in the
other direction, both for isolated ions and for interacting
ions. We first discuss the symmetry property in the simplest
model: that of a single-ion channel in discrete time and dis-
crete space. The details are simplified by the fact that each
individual trans path has a positive probability in such a
model. Single-ion models are applicable to systems where
the concentrations are low enough that there is usually at
most one ion inside the channel at any given time or to
single-ion occupancy channels like the gramicidin channel
[19]. The models in this family also serve as building blocks
for models with multiple ions. We then turn our attention to
models with multiple interacting ions. There we use a
discrete-space continuous-time model. The use of discrete
space permits analysis and simulation, while the use of dis-
crete time avoids issues associated with ions simultaneously
making discrete jumps.

Although our analysis is done for discrete-space models
in both discrete and continuous time, the physical laws that
govern the channel are fundamentally continuous in nature.
Thus, we use discrete-state models that, in the limit of small
step size, converge to continuous-state models. Special inter-
est is paid to preserving time-symmetry properties that may
be present in continuous-state models, to the discrete-state
models. The space discretization is done by dividing the
channel into N sites labeled 1, ...,N and considering the left
and right baths as sites 0 and N+1, respectively. Figure 1
depicts this discretization. At any given time, ions can be
located in the channel or in either one of the baths, but they
cannot be located in the membrane because the membrane is
assumed impermeable to ions. Models can be closed or open.
Closed models include the channel and baths, so ions remain
in the system forever. Open models include the channel but
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FIG. 1. (Color online) Discrete-space model.

not the baths, so ions are killed when they reach the baths.

We study Markov models of an ion channel in this paper,
although there is growing evidence that ion channels cannot
be accurately modeled by Markov processes. See the discus-
sion in Sec. VIII. An excellent description of the theory of
symmetry and reversibility for discrete-state processes is
given by Kelly [20], which includes applications to migra-
tion processes, population genetics, and queueing systems.
Additional references for symmetric diffusions are given in
Sec. IV.

The remainder of the paper is organized as follows. Sec-
tion II describes the discrete-space, discrete-time models for
a single-ion, and Sec. III proves the symmetry property for
the single-ion model. Sections IV-VI lay the groundwork for
examining the time symmetry of frans paths for an interact-
ing ion model. Section IV relates discrete-state models to
continuous-state models. Section V begins the description of
models with multiple ions by working under the assumption
of no interaction among the ions and expressing the equilib-
rium distribution of an open channel as a grand canonical
ensemble. This viewpoint, which is grounded in statistical
physics, is exploited in Sec. VI to help motivate the model
for interacting ions. With this foundation, Sec. VII examines
the question of symmetry in an open-channel model with
interacting ions in equilibrium.

II. DISCRETE MODELS FOR SINGLE-ION MOTION

This section considers two related discrete-time Markov
chain models for single-ion motion. The models can be eas-
ily adapted to obtain continuous-time models. First, consider
a closed model, such that the location of the ion is repre-
sented by a discrete time Markov chain X on sites 0,...,N
+1.

Fori,je{0,...,N+1}, the transition probability p;, ; is the
probability the ion is at site j after one time step, given that
it is at state i at the beginning of the time step. Assume that
pij=0 for j&{i-1,i,i+1} and that p; ;>0 whenever |ijl|
=1. Also assume that > =1 for each i, so that the Markov
chain is conservative (i.e., the total probability mass is 1 at
any time). This type of Markov chain is depicted in Fig. 2
and is known as a birth-death process. The drift of this pro-
cess in state i is given by p; ;. —p; ;. The selection of tran-
sition probabilities to match diffusion coefficients and elec-
tric potentials (including the effect of induced surface
charges on the dielectric channel boundary) of physical chan-
nels is discussed in Sec. IV.
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FIG. 2. (Color online) Conservative birth-death process on
{0, ...,N+1}. Self-loops are omitted.

Next, consider a related open model, such that the loca-
tion of the ion is represented by a discrete-time Markov

chain X on 1 , ..., killed at the boundaries. Suppose that the
one-step transition probabilities p; ; are the same as those for

the closed model for i=1, ...,N. Therefore X is a birth-death
process killed at the boundaries, and it is depicted in Fig. 3.
Given that the ion is at state 1 at some time k, the ion next
jumps towards state 0 with probability p,, and vanishes, in
which case the Markov process is said to be killed at time
k+ 1. Therefore, the process is not conservative.

III. EQUIVALENCE OF trans PATH DISTRIBUTION

The model described in Sec. II induces a probability dis-
tribution on the set of left-to-right frans paths and another
probability distribution on the set of right-to-left trans paths.
In this section these distributions are shown to be equivalent
under time reversal. The equivalence holds for arbitrary po-
tential profiles, which can include the effect of induced sur-
face charges, for continuous time and state, as well as for
closed models. A key to the proof is a concept of symmetry,
related to the notion of reversibility, of Markov processes.

Consider the open model described in Sec. II. Let y
=(%,...»Yn) be a path of finite length m, where 7,
e{l,....N} for be{0,...,m} and |y,—7y,_,|<1 for b
e{l,...,m}. A trans path is a path that starts at a boundary
and ends at the other boundary. Let S;; be the set of left-to-
right trans paths, consisting of all paths 7y of the form

7=(YO= 1’71’ s‘)/m—l"}/mzN)’

where it is implicit that the ion jumps from the left bath into
site 1 just before time O and that it jumps from site N to the
right bath at time m+ 1. Similarly, let Sg; be the set of right-
to-left trans paths, consisting of all paths vy of the form 7y
=(%=N,V|» ... s V1> Ym=1). In this case, it is implicit that
the ion jumps from the right bath into site N just before time
0 and that it jumps from site 1 to the left bath at time m+1.

For ye S;x let 7 be the concatenation of 7y and site N
+l—ie., Y=y -+ » V- N+1)—and let Pl vl
:= PI[9| Ty, <T,], where T, and Ty,, are the destruction

p;z p2,3 pu-z.m pN~ 1M FI.‘I.N+1
q.u r"2,1 ps.z al.m.z pN,rM RM,N

FIG. 3. (Color online) Birth-death process on {1, ...,N} killed at
the boundaries. Self-loops are omitted.
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times at the left and right boundaries, respectively; e.g., T} is

the time at which X jumps from site 1 into the left bath,
where it is immediately killed. Similarly, for ye Sg;, let
Pri[v]:= PN 9| Ty<Ty,,] where ¥ is the concatenation of y
and site 0.

For any finite path y=(vy, V(s Ym-1>Vm), define its
time-reversed path  ¥,.,=(Vis Yine1»>-+-» Y1 Yo)- Then, 7y
€ Sy implies that v,,, € Sg; and vice versa. The mapping of
v€ Sip 10 VY, 18 @ One-to-one and onto mapping of S; to
Sgi- The symmetry equivalence result is stated as a proposi-
tion.

Proposition IIL.1. For any ye Sig, Prrlv]1=Pril Vren)-
The proof of this proposition is provided in Appendix A. It is
based on the detailed balance [20] or V symmetry [21] of
Markov chains.

Since vy in proposition III.1 is arbitrary and there is a
one-to-one and onto mapping of S;z to Sg;, the distribution
of left-to-right frans paths is equal to the distribution of time-
reversed right-to-left frans paths. This equivalence holds for
arbitrary nonzero one-step transition probabilities of a birth-
death process and can be extended to the continuous-state
process obtained as the diffusion limit of this Markov chain
[22] for arbitrary potential profiles.

The equivalence explains why the mean passage times
obtained in [19] for channels with single-ion occupancy are
symmetrical around zero transmembrane potential. The po-
tential profile in [19] has two components: a linear compo-
nent with slope u and a nonlinear component that is sym-
metrical around the center of the channel. A trans path from
left to right when the linear component has slope u sees the
same potential profile as the time-reversed trans path when
the linear component has slope —u. Since the trans paths
from right to left are equal in distribution to the time-
reversed left-to-right frans paths for any potential profile, the
trans paths from left to right when the linear component has
slope —u are equal in distribution to those trans paths from
left to right when the linear component has slope . This
observed symmetry of transit time distributions as a function
of transmembrane potential around zero transmembrane po-
tential relies on the assumption that the nonlinear component
of the potential is symmetric about the center of the channel.
However, the equivalence in distribution of the left-to-right
trans paths and the time-reversed right-to-left trans paths
holds for any potential profile.

The equivalence in distribution of the left-to-right trans
paths and the time-reversed right-to-left trans paths also ex-
plains why the average translocation time in [23] does not
depend on the direction in which the ion translocates. The
result given here is stronger than the equivalence of mean
passage times. It states that the distribution of these paths is
equivalent when they are time reversed. For example, not
only is the mean duration of these paths equal, but other
measures, such as the variance of passage time or the mean
time a path spends within a specified section of the channel,
are also the same for both directions of traversal. This sounds
counterintuitive at first, but it results from the fact that an ion
that diffuses against a strong electric potential must do so
quickly or else it will be much more unlikely to cross at all.
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IV. MARKOV CHAINS ASSOCIATED WITH REVERSIBLE
DIFFUSION PROCESSES

This section discusses symmetry and reversibility for dif-
fusion processes and describes a space discretization proce-
dure that preserves these properties. Space discretization en-
ables easy computation and simulation, while preserving the
symmetry of continuous-state models inherent in the under-
lying physical forces. As mentioned in the Introduction, this
and the following two sections lay the groundwork for ex-
amining the time symmetry of trans paths for an interacting
ion model, by progression from single-ion models in this
section, to noninteracting ion models in the next section, to
interacting ion models in the section after that.

For the purposes of this paper, it suffices to consider a
one-dimensional diffusion, but the descriptions and proce-
dures of this section apply to higher-dimensional processes
as well, as described in Appendix B. Let B be an open con-
nected subset of R. A one-dimensional diffusion on B has a
backwards generator which is a second-order differential op-
erator of the form

Pp ¢
LG=D—+u—,
¢ ax? H ox
such that D is a positive-valued function on B and u is a
real-valued function on B. The generator can be rewritten in
a more symmetrical (as an operator) form as

d _d¢ _dd
Lo= 0o o
where
oD
p=p=

The function u specifies the infinitesimal drift of the process,
and 2D specifies the infinitesimal variance of the process.

In addition, the behavior of the diffusion at the boundary
dB of B must be specified, unless the diffusion cannot reach
the boundary, such as if B=R. Following Kent [21], we shall
assume that the boundary behavior is a mixture of destroying
and normal reflection at the boundary. The boundary behav-
ior is specified by the following condition for a function f on
B:

af+ﬁnllf=0 on dB, (1)
ox

where « and S are functions on dB with O0<a=<1 and «
+B=1 and n(¢) is the outward pointing normal vector at &
€ dB. If =1, then the process is killed at the boundary and
the process is not conservative. If =0, the process is re-
flected at the boundary and is therefore conservative.

Given a positive, twice continuously differentiable func-
tion v on B, the inner product of two functions ¢ and ¢ on B
relative to v is defined as (¢, @), =Jpdvdx. The adjoint
operator of £ with respect to the inner product (-,-);, de-
noted by L, corresponds to the spatial derivative component
of the Smoluchowski diffusion equation—i.e., dp/dt=L"¢
with g=—DBdu/dx and u(x) being the potential function.
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The diffusion specified by £ and the boundary condition (1)
is said to be symmetric with symmetry density v, or simply v
symmetric, if (L, )=, LP), for all functions ¢ and i
on B satisfying the boundary condition (1). That is, £, under
the boundary condition (1), is a self-adjoint operator with
respect to the inner product (-, -),. Appendix B discusses this
v symmetry for higher-dimensional diffusions.

The diffusion process is time reversible if it is statistically
the same when time runs backwards (which requires that the
chain be conservative and stationary). A stationary diffusion
with equilibrium density v and the boundary conditions de-
scribed is time reversible if and only if it is v symmetric
[21]. However, a diffusion with destroying (i.e., a nonconser-
vative diffusion) can also be v symmetric for some v.

Given the diffusion coefficient D and a positive function v
on B, there is a unique choice of the drift function u for
which the diffusion is v symmetric [21,24,25]. Writing v in
the form v=aexp(-u), where « is a normalizing constant
and u is a twice continuously differentiable function on B,
the condition on the drift is

o0 _pn
ax du
or, equivalently,
n=- D&—u.
ox

That is, v symmetry is equivalent to the drift function &
being the negative gradient, scaled by D, of a potential func-
tion u.

Given a v-symmetric diffusion process W, a sequence of
Markov chains {X"}, .y is said to be associated with W if (i)
XV converges in distribution to W as N—o and (ii) XV is V
symmetric, where V is a discretization of v.

Let us find a sequence of Markov chains associated with a
one-dimensional v-symmetric diffusion process W on [0,L,]
such that v(x)=exp[-u(x)] for some energy function u(x).
Assume that the diffusion coefficient is D(x)>0. Since the
process is v symmetric, the infinitesimal drift w(x) is given
by

dD(x) D) du(x) .
dx dx

plx) = 2)
Consider the channel being divided into sections of length
Ax, where Ax=L_./N is the space discretization parameter.
Let V,=exp(-U;), where U,=u(iAx). We will specify a fam-
ily of V-symmetric birth-death Markov processes XV, so that

as N—, the processes converge to W in distribution. The
processes are discrete in space. The remainder of this section
considers a discrete-time model, but it is straightforward to
adapt the procedure for a continuous-time model. Let the
time discretization Ar be such that as Ax,Ar—0,

(Ax)?
4’ 2
At

where

PHYSICAL REVIEW E 73, 046126 (2006)
G =3 max 2D(x).
xel0,L.]

The V-symmetry condition (see Sec. III) is that the transition
probabilities p;; satisfy

exp(= Upp;j=exp(= U)p;, 3)

for i,j e{l,...,N}. Equation (3) is trivially satisfied when
j=i. For je{i—1,i+1}, Eq. (3) is equivalent to

piy_exp(=U) _exp[-3(U;=U))]

Pj.i - exp(=U)) - exp[— %(Ui_ Uj)]. @
Forie{l,...,N}and je{i—1,i+1} let
pom P L u)
where D;=D(iAx), and let
pii=1=(pii1+Piic1)- (6)
Notice that ( Asz 72 must be small enough to keep the one-step

transition probabilities between 0 and 1, which is why a
lower bound was required on G. Then Eq. (4) is satisfied, so

the discrete-time, discrete-space Markov process XV with
transition probabilities (p; ;) is V symmetric as desired.

The one-step transition probabilities defined by Egs. (5)
and (6) do not make use of the original diffusion’s drift ex-
plicitly. Nevertheless, the drift of the sequence of Markov
chains converges to the drift u of the diffusion process, ow-
ing to Eq. (2) and the symmetry of the processes.

To check convergence to the original diffusion process,
the main task is to check that the local drift and variance per
unit time of the discrete processes converge to the drift func-
tion u and twice the diffusion function, 2D, of the original
diffusion process, respectively. (A rigorous proof of conver-
gence in the distribution for random processes requires de-
fining continuous-time versions of the discrete processes—
for example, by linear interpolation—and checking
conditions for tightness of their probability measures in path
space. See, for example, [26-28] for details.)

So it needs to be shown that w(x)=u(x) and that 7(x)
=2D(x), where w(x) and 7(x) are the limiting infinitesimal
mean and variance per unit time, respectively. This can be
easily checked from the first and second moments (w; and
w?, respectively) of the unscaled jumps of the Markov chain
from site i—i.e., from

i°

Ax
= lim —w!, 7
R VL 7
iAx — x
. (Ax)?
n(x)= lim [w? = (whH?], (8)
Ax,At—0 At
iAx — x
where
W} =Pii+1 ~ Piji-1> )
WP =D+ Piit- (10)
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Therefore, the sequence of Markov chains converges in
distribution to the original diffusion process as claimed.

V. NONINTERACTING STEADY-STATE MODELS

This section continues to move towards a model with in-
teracting ions by considering the simplest models with mul-
tiple ions. Namely, the ions behave independently, each ac-
cording to a single-ion model of the type discussed
previously. We also switch to taking the discrete-state models
to be in continuous time, because it naturally leads to only
one ion moving at a time, leading to a much smaller number
of possible transitions. First a closed single-ion model is
specified, then a closed noninteracting model is specified,
and finally an open noninteracting model is derived as the
infinite ion limit of the closed model. The equilibrium distri-
bution of the open noninteracting model is expressed in
terms of the internal energy of the corresponding state con-
figuration, which, in the terminology of statistical mechanics,
is a grand canonical ensemble [29]. The statistical equiva-
lence of left-right and right-left zrans paths for any ion holds
for the models of this section, because the statistical behavior
of each ion in the channel follows a single-ion model of the
type considered earlier.

A. Closed single-ion model

Let L, be the length of the channel, and let u(x) be the
energy of the ion when it is located at x € [0, L,], which can
include the energy due to fixed electric potentials, image
charges, and Born energy, for example. For x €[0,L, ], let
D(x) be the diffusion coefficient. Let space be discretized by
Ax=%, and let U;=u(iAx) and D;,=D(iAx) for i €{0,...,N
+1}. The ion follows a conservative Markov chain X on
{0, ...,N+1}, as described in Sec. II, but operating in con-
tinuous time. Thus, transition rates (g;;) will be specified,
rather than transition probabilities (p; ;).

Given that the process (without scaling) is in state i, its
infinitesimal drift is ¢; ;.1 —¢; ;- and its infinitesimal variance
per unit time is ¢, ;41 +¢,,-;. These expressions match those
on the right-hand sides of Egs. (9) and (10) with p’s replaced
by ¢’s. Therefore, the construction of the associated discrete-
state processes in Sec. IV carries over to continuous time,
yielding the following choice of transition rates, for some
positive constants M, \;, and Ag. For |i—j|=1, i#{0,N
+1},

D;+D;

4= e T, ()
AN Do+Dy i _
Goa=7, 5 ¢ (Ui=Up)2 (12)
ANeDyii+D
qN+IN= MR%\/[(UN—UN“)/Z, (13)

and g; ;=0 for all other i # j. The diagonal of the transition
rate matrix is given by

PHYSICAL REVIEW E 73, 046126 (2006)

qij=-— (@ij=1+ i 1)

except for goo=—qo1 and gy,1 n+1=—Gn+1 n- At this point M
is just a parameter value, but later on it will represent the
number of ions. The constants M, \;, and A affect the en-
trance rates from the baths into the channel, as can be ob-
served in Egs. (12) and (13). As indicated in Sec. IV, this
Markov process X is reversible, its scaled limit corresponds
to an electrodiffusion process with diffusion coefficient D(x)
and drift vector field u(x), and its equilibrium distribution is
a discretized version of the equilibrium distribution of the
limit diffusion.

The equilibrium distribution 77 € R**? is of the Boltzmann
type—i.e.,
T= l(Me_uﬂ,e‘U', ,e‘UN,%e_UN“) , (14)
o )\L )\R

where « is a positive normalizing constant given by

M M

a=—e¢ YUy oo po7Ung —eUni, (15)
L Ag

The reversibility of X can indeed be verified by directly

checking the detailed balance equations ;q; ;)= m;q;; for all
i,je{0,...,N+1}.

B. Closed noninteracting model

Given an integer M =1, a closed model of M noninteract-
ing ions is now considered, where each of the ions behaves
according the closed single-ion model just described. Let n;
€{0,...,M} be the number of ions at site i, and let n
=(ng, ... ny41), where ng+-+-+ny, =M. Since the ions are
assumed to be independent, the joint equilibrium distribution
of the ions, denoted by II, can be obtained from the equilib-
rium distribution of the single-ion model (14) as

H(ﬁ):< )(770)”0"'(7TN+1)nN+1
ng " Nyt

<a>< w )
- no!"'nN+1!

<M6—UO) O(e—Ul)"l .. (e_UN)nN< Me—UN+1) "
N A

R
M ki
(Me_UO +eUig o peUny Me_UN*rl)
L R
(16)

where (a) follows from Egs. (14) and (15) and the expression
for multinomial coefficients:

( i ) i!
JOJa ]1' .]a'

The rates at which ions jump from one site to the other in
this model are proportional to the corresponding transition
rates between sites of the individual ion processes. The pro-
portionality constants are the number of ions at the site
where the jump originates—i.e.,
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q(nls' . "”i’nj" . ~5nN)7(n19' . "”i_l’nj+l see ~J1N) = niqi’j’

where g; ; are the transition rates of the single-ion process,
given by Eqgs. (11) and (12). It is easy to check that these
transition rates are Il symmetric and that they correspond to
a conservative process; hence, the model is reversible. Due
to the reversibility of the process, the equivalence in distri-
bution of the time-reversed trans paths holds in this model as
well.

Denote the total number of ions inside the channel (so not
in the baths) by a=n;+---+ny and let i=(n;,...,ny). The
marginal distribution of the ions inside the channel, denoted

by I1, can be obtained from Eq. (14) as

all M Mo
I1(7) = n - nyM-a (7)™ () "Ny + )"
“WM-a+)(M-a+2)-- (M= 1M (/)"
B Ma nl!
(e

X

!

p"(l + ip(e_U1 + o 4 e_UN))_M
ny. M ’

(17)

where (a) follows by substituting Eqs. (14) and (15), rear-
ranging terms, and

e Yo o Unii -1
pi= + . (18)
AL AR

C. Open noninteracting model

A reversible open noninteracting model is now obtained
by taking M — < in the closed model just described. Notice
that as M — , the entrance rates go; and gy, y from the
baths into the channel of the closed single-ion model, given
by Egs. (12) and (13), converge to zero. However, the other
transition rates, given by Eq. (11), remain the same. The
equilibrium distribution for one individual ion, given by Eq.
(14), converges to

T (ﬁe-Uo,o, ,o,ﬁe-UNH), (19)
AL Ag
which indicates that for large M, the ion will tend to stay out
of the channel. However, since there are many ions in the
closed model, the channel need not be empty most of the
time.

The equilibrium distribution of the limiting open model,
denoted by P, is obtained from the marginal distribution of
ions inside the channel of the closed model (17) as

~Upn\n;
P(A) = lim TI(4) = (M
M—

n.!

exp(- pe-%) =
1.

=Upn\nn
" (M expl pe_UN)>,
ny.:

which is the product distribution corresponding to N inde-
pendent Poisson random variables with parameters p exp(
-U;) for ie{l,...,N}. On average, there are p[exp(-U,)

PHYSICAL REVIEW E 73, 046126 (2006)

+-+++exp(=Uy)] ions inside the channel in steady state, and
this number can be tailored to whatever desired value
through p by scaling A; and \;, as can be noticed from Eq.
(18).

The equilibrium distribution of this open model can be
expressed as a grand canonical ensemble [29] with an inter-
nal energy function V, as follows:

Nyt

1 .
P(i) = j%e_v(n),
ang: " ny!

where the internal energy function is given by
N
V(A) = 2 nU;
i=1

and & is a constant chosen so that P(72) is a probability
distribution. The constant &, also called the partition func-
tion, is given by

pje—V(ri)
a= > ————=exp[ple’ 1+ -+ +e7 M)
j’"l"“’”N>0: nl ' e nN!
np+ oty =j

The transitions rates in the closed model involving an ion
already in the channel do not depend on N and thus will be
the same in the limiting open model. Given a state 77 and 0
<i,j<N+1 with |i—j|=1, let A"/ denote the state obtained
from state 7 by transferring an ion from site i to site j. For
example, if 1<<i,j<N,

ni+ 1,

nAl:j=(n1,... b

n—1, ...

ﬁl,O: (nl - 15”2’ ,nN)9

ANIN = (g, gy + 1),

For I<i<N,0<j<N+1, and |i—j| =1, the following tran-
sition rates for the open model are the same as those for the
closed model:

D;+ D!'e_(Uj-U,-)/Z. (20)

qinii =Niq;j=n; 5
It remains to specify transition rates for ions entering the
channel. In the closed system there are M, ions at the left
bath on average and each one enters the channel at a rate
qo.1- Therefore, in the open model, independent ions enter the
channel from the left bath at a (total) rate given by

. @ _u. Do+ Dy
g 01 = lim Moqo = O pe”°
M—o0

e Wi=Up)2

21

where (a) follows from Egs. (12) and (19) and 6,=1. (Later
we consider different choices of 6;, leading to a nonrevers-
ible model.) Similarly, independent ions enter the channel
from the right bath at a (total) rate given by
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g7 aN+1N = A}[im Mn G N

— BRpe‘UNH DN“—+DN6—(UN—UN+])/2’ (22)

where, for now, @z=1. It can be easily checked that the tran-
sition rates of this open model (with 6;=6z=1) given by
Egs. (20)—(22) are P symmetric. Therefore this conservative
process is reversible. Intuitively speaking, the reversibility is
inherited, in the limit, from the closed model.

We pause to make some observations about the open
model. The rates for transitions which preserve the number
of ions in the system can be expressed in terms of the differ-
ence in internal energy of the system. Specifically, if 1
<i,j<N with |i—j| =1, then

D;+D;

G ji = ni’Tle—[V<ﬁi’f>—V(ﬁ)]/z. 23)

Equation (23) does not hold for the transitions in which an
ion enters or exits the system.

The only transition rates for the open model that depend
on p are the entrance rates for new ions, given by Egs. (21)
and (22). So far, we have assumed 6, =6z=1. But if 6, =6,
=6 for any positive constant 6, then the constant 6 can be
incorporated into the constant p, so that the resulting process
is reversible whenever 6; = 6.

The constants A\; and A; do not separately appear in the
transition rate for the open system, though they do influence
p.

The reason is, intuitively, that a smaller value of A; in the
closed model leads to a larger number of ions in the left bath,
which tends to offset the small value of A\;. Moreover, the
ratio of the entrance rate on the left to the entrance rate on
the right is given by

9ii% 6 Do+ D,

— e—[(U0+U|)/2—(UN+UN+1)/2]'
7, AN+LN eRDN+DN+l

Thus, as long as ;= 6, the ratio is fixed by the diffusion
coefficient function D and potential function u.

Due to the reversibility of the process, the equivalence in
distribution of the time-reversed trans paths holds in this
model. Furthermore, the equivalence holds even if the sys-
tem is not in equilibrium or if 6 # 6;, because each ion in
the channel independently follows an e~Vi-symmetric Mar-
kov process. Since the diffusion limit of the single-ion pro-
cesses corresponds to an electrodiffusion process, it follows
from the independence between ions that the diffusion limit
of this open noninteracting model is a Nernst-Planck elec-
trodiffusion process with diffusion coefficient D(x) and drift

m(x).

VI. INTERACTING IONS IN REVERSIBLE EQUILIBRIUM

Building on the open noninteracting model of the previ-
ous section, in this section a reversible open interacting
model is suggested by adding an interaction energy term to
internal energy. It is assumed that the interaction is present
only inside the channel, not in the baths. This models the
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case that the baths are large and rapidly mixing. The interac-
tion that incoming ions experience inside the channel causes
the entrance rates from the baths into the channel to depend
on the channel state. A special case is considered by assum-
ing that there is a neutral (interaction-free) lobby at each end
of the channel to which ions jump from the baths. In this
case, the entrance rates do not depend on the channel state.

Let ¢, ; denote the interaction energy between an ion at
site 7 and an ion at site j, which can be due to Coulomb or
Lennard-Jones potentials, for example. The interaction en-
ergy function ¢; ;, along with the energy function U;, can also
account for the effect of induced surface charges on the di-
electric channel boundary, because the charge induced by a
particular ion is proportional to the charge on the ion.

It is assumed that this interaction energy function is
symmetric—i.e., ; ;=; ;. If ¢; ;=0, there is no interaction
between ions located at site i and those at site j. The inter-
action is incorporated by including an interaction potential to
the internal energy function, so that the internal energy func-
tion becomes

N
V(i) = 2 nU; + Vi),
i=1

where V; is the interaction potential defined by

N N
1 1
Vi) == E nin;i; ;+ _E ni(ni— )i,
2 i 235

i#j

The first summation in V; corresponds to the interaction en-
ergy between ions at different sites, and the second summa-
tion corresponds to the interaction energy between ions at the
same site. Multiple ions can be discouraged from being lo-
cated simultaneously at the same site by letting

{w,-,,}}

Y, ;> max] max {Uj}, max
’ ie{l,...N} ijel2,.. N-1},i#]

for i e{2,...,N—1}. This is appropriate if the channel is so
narrow that ions cannot pass each other inside the channel.

Given two distinct states 72 and 7', the transition rate g ;
for the open interacting model is taken to be given by

G = g e VIV, (24)

where qu, denotes the transition rates for the open nonin-
teracting model of the previous section. The reversibility of
the open noninteracting model implies that

PN 5 =P )0 5 (25)

It follows immediately from Egs. (24) and (25) that the open
interacting model is reversible with equilibrium distribution
given by P(2)=P°(A)exp[-V,(7)]/Z, where Z is a normaliz-
ing constant.

More explicitly, the transition rates for the open interact-
ing model are given as follows. The rates for transitions pre-
serving the number of ions in the channel are given by
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Di+D; _pyiiiir-viayz _ , DitDi

U-U/2
)

G pii = 1 el

1
Xexp| — > (ni= L=n)dhyj+ni j— (= Dy

N
+ 2 (Y~ Ya) (26)
a‘:li,j

for 1<i,j<N and |i—j|=1. The rates for transitions involv-
ing an ion exiting the channel are given by

D+ D,
2

N
- 2 "i%,i)
i=2

1
eXp| — E<Uo— Uy—(ny - 1)¢1,1

and

_p DPv+ Dy
q”’"NH,N_ N

1
Pl — E(UNH - Uy~ (ny— 1)¢N,N

N-1
- niy,;
i=1

Finally, the rates for transitions involving an ion entering the
channel are given by

N

_y. Do+ Dy 1

gy, = OLpe™ 5 &Xp| - E(Ul ~Up+ 2 ”i¢1,i)
=1

and
Dy + Dy

= 0 e_UN+l
RP 5

q"’"NH,N

N
1
Xexp| — 5<UN_ Upii + 2 nﬂ/’N,i) ,

i=1

where, for now, 6;=0r=1.

One motivation for the choice (24) for transition rates is
that, if ¢; = 0, the rates reduce to those of the noninteracting
model discussed in Sec. V C. A second motivation is based
on the discretization procedure of Sec. IV, which models the
motion of a single ion. Specifically, Eq. (5) is used to define
transition probabilities, or transition rates, given an energy
function u and a diffusion function D, for a discrete space
model for single-ion motion. Those transition rates are a
function of the energy difference between the sites involved

in the jump. The diffusion limit of that discrete-space model
du(x)
has a drift function given by fi(x)=-D(x)—~ and diffusion

function D(x). We can identify V as a function of the position
of one ion with all the other ions fixed with the function U of
Sec. IV. Then, when the system state in this interacting
model is 71, the jump of a single ion from site i to site j
causes an energy difference V(iA")—V(i). Comparing Egs.
(26) with (5) one can infer that the local drift experienced by
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an individual ion in the diffusion limit of this open interact-
ing model is proportional to the gradient of the internal en-
ergy, with the other ions considered to be fixed, times the
diffusion coefficient. This interpretation relies on the fact that
in these continuous-time models only one ion jumps at a
time.

Reversibility of the model means that if the model oper-
ating in statistical equilibrium were filmed, then the same
statistical picture would result if the film were run backwards
in time. An observer might make a list of left-right trans
paths as follows. Each time an ion enters from the left, the
observer tracks the timed path of the ion. If the ion exits to
the right, the path is appended to the list of observed left-
right trans paths. If the ion exits to the left, the record for
that ion is discarded. Similarly, an observer could make a list
of right-left trans paths. Due to the reversibility, the distri-
bution of one of the left-right trans paths is the same as the
distribution of one of the time-reversed right-left trans paths.
This is true even though the ions interact with each other.
Also, the observer will see left-right frans paths occurring at
the same long-term rate as right-left trans paths. This is a
consequence of reversibility and can also be thought of as a
property inherited from a closed-channel model as the num-
ber of ions converges to infinity. In contrast, the rate of left-
left cis paths (a cis path is traced by an ion exiting on the
same side that it enters) need not equal the rate of right-right
cis paths.

Throughout this section it was assumed that 6, =6r=1. As
in the case of the open noninteracting model, the choice 6,
=0r=0 for any 6>0 is equivalent to 6,=0r=1 and p re-
placed by 6p, and in particular the model is reversible. In the
next section we explore, through simulation, a model with
0; # 0.

VII. INTERACTING IONS IN NONREVERSIBLE
EQUILIBRIUM

This section discusses the effects of some of the system
parameters in this open interacting model and also investi-
gates systems with 8; # 6 for which the equilibrium is not
reversible. It is assumed that the ions jump from the baths
into neutral lobbies that are part of the channel but where the
ions do not experience interaction with other ions in the
channel—i.e., ¢, ;=4 ;=0 for je{l,...,N}.

The ions at the neutral lobbies can move farther into the
channel where the ions experience an interaction with other
ions, or they can leave the channel. A channel of length L.

. . . . L,
=1X107® m is considered with a space-step size Ax=7; and
2

time-step size Atz%, where D is the space homogeneous
diffusion coefficient, which is assumed to be 1 X 1072 m?2/s.
For simplicity, in this example, we do not include the effect
of induced surface charges on the dielectric channel bound-
ary, but we stress that they are very important for accurate
modeling [13], and in theory they can be incorporated into
the pairwise interaction potential ¢ and energy u due to the
electric potential. Thus, it is assumed that the interaction en-
ergy is due to Coulomb potentials—i.e.,
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FIG. 4. (Color online) Effect of transmembrane potential on
distribution of trans path duration, dr=1X 107 s.
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where Z is the ion valence assumed to be +1, e is the proton
charge number =1.602 X 10719 C, e is the electric permittiv-
ity of free space ~8.854X 107! F/m, ¢, is the relative per-
mittivity of the medium, kz is Boltzmann’s constant
~1.381 X 1072 J/K, T is the absolute temperature which is
assumed to be 298 K, and x,y are the distances of the two
ions from the left bath. Let the energy u be due to a linear
electric potential

where V,, is the transmembrane electric potential—i.e., V,,
=Viinside ceity= Viourside ceiry» 10 Units of volts. The relative per-
mittivity is assumed to be that of water (=80), and the trans-
membrane electric potential is assumed to be —70 X 1073 Vv,
unless indicated otherwise. We also took A; =Az=0.5.

Figure 4 shows the distribution of the frans path duration
under three different transmembrane potentials regimes. The
left plot corresponds to the distribution of the left-to-right
trans path duration, and the right plot corresponds to the
distribution of the right-to-left trans path duration. It can be
observed that the distributions of path duration of both types
of trans paths are equivalent in all three regimes. This is
expected because the entrance rates corresponding to revers-
ibility are used. It can be also observed that larger transmem-
brane potentials, in absolute value, reduce the time it takes
an ion to cross the channel. This is not surprising because
larger transmembrane potentials generate larger driving
forces on the ions.

Figure 5 shows the distribution of the trans path duration
under three different Coulomb interaction strengths. Again,
the left plot corresponds to the distribution of the left-to-right
trans path duration, and the right plot corresponds to the
distribution of the right-to-left trans path duration. Notice
that the distributions of path duration of both types of trans
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FIG. 5. (Color online) Effect of Coulomb interaction strength on
the distribution of trans path duration, dr=1x 1077 s.

paths are equivalent. The Coulomb interaction strength can
be increased by reducing the relative permittivity, and it can
be decreased by increasing the relative permittivity. The ef-
fect of changes in the relative permittivity on the viscosity of
the medium, and hence on the diffusion coefficient, is ne-
glected in this example. The limit €,— % would correspond
to the case without Coulomb interaction. Relative permittivi-
ties below that of water would correspond to channels that
are so narrow that there are gaps between water molecules. It
can be observed that the Coulomb interaction strength does
not have a monotonic effect on the time for ion crossing. At
first glance it seems surprising that higher Coulomb interac-
tion strength would yield faster transit times, but this is due
to the fact that as the Coulomb interaction strength increases,
ions are discouraged from entering the channel and the sys-
tem looks more like a single-ion channel.

So far, it has been assumed that ; = 6, leading to revers-
ibility. In particular, if ;= 6y, the entrance rates at the right
and left of the channel are such that, in the long run, the
number of left-right frans paths per unit time equals the
number of right-left trans paths per unit time. Even if 6,
# O, the transition rates of the open noninteracting and in-
teracting models are well defined. There is still an equilib-
rium probability distribution, even though it may be hard to
describe, and if the system is initialized with the equilibrium
probability distribution, it will be a stationary Markov pro-
cess, remaining in the equilibrium distribution for all time. If
0, # O, then the open noninteracting model is not reversible,
because the long-term rate of left-right trans paths would not
equal the long-term rate of right-left trans paths. Therefore,
if 6, # 6Oy, the symmetry condition (25) for the open nonin-
teracting model is violated. It follows, therefore, that the
open interacting model is also not reversible in the case 6;
¢ 0R.

Intuitively, the case 6; # 6y means that the baths are so
large, or else are actively pumped by some other channel,
that the concentrations within the two baths are not in equi-
librium as determined by the channel.

Figure 6 shows the distribution of the zrans path duration
under four different values for the pair (6, 6z), as found by
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simulation. The left plot displays the distribution of the left-
to-right frans path duration and the right plot displays the
distribution of the right-to-left trans paths duration. In the
two cases that 6, = @p—namely, (1,1) and (5,5)—the distri-
butions of path duration are the same in each direction. The
case (5,5) is the same as the case (1,1), but with p increased
by a factor of 5, corresponding to a higher mean concentra-
tion of ions. We observe in this simulation that the duration
of transit times is longer for the larger p.

In the two cases that 6+ 6g—namely, (1,5) and
(5,1)—the distributions of path duration in each direction
are similar, but definitely not the same. In particular, in the
case (6;,0;)=(1,5), so that there is a net flux of ions cross-
ing from right to left across the channel (fighting against the
transmembrane potential), the transit time from right to left
is typically markedly longer than the transit time from left to
right. It is conceivable that there is a choice of nontrivial
interaction potential and 6; # 0 such that the duration of
transit times is the same in each direction, but there is no
reason to think that they should generally be exactly the
same, and the simulations show that they definitely are not
always the same.

VIII. DISCUSSION

This paper points to the related concepts of reversibility
and v symmetry of Markov processes to explain the equiva-
lence of the transit time distribution, observed in ion chan-
nels. Such equivalence holds even when ion-ion interaction
is taken into account, as long as the ratio of concentrations in
the left and right baths is in an equilibrium determined by the
channel.

We have used Markov models in this paper, even though
there are long-standing objections in the literature to the use
of Markov processes for the modeling of ion channels (cf.,
e.g., [30-36]), and recently these objections have found sup-
port by direct experimental evidence [37-40]. In particular, it
is proposed that the holding time of a state, rather than hav-
ing a memoryless distribution (i.e., the exponential distribu-
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tion for continuous time or the geometric distribution for
discrete time), should have a distribution with a heavy,
power-law tail. For such a distribution, the longer an ion has
been in a state, the longer it is likely to stay there. If the only
aspect of non-Markov behavior is the distribution of the
holding times, and not the selection mechanism for next
states, then the equivalence of frans path distributions for a
single ion described in Sec. IIl immediately carries over. If
there is non-Markov behavior also in the selection mecha-
nism for the next states, then the process can perhaps be
embedded into a higher-dimensional Markov process. When
we discussed interacting ions, we relied more heavily on the
Markov assumption, because we described the dynamics us-
ing a potential function, and the potential function is a func-
tion of the state. If the process is not Markov, perhaps it
would be for a large state space. For example, the state could
include not only the position of an ion, but also its momen-
tum or local speed. In the end, we (1) point out that revers-
ibility, per se, is easier to discuss and characterize for Mar-
kovian processes, but it can also hold for general time-
stationary random processes, and (2) we leave it for future
research to determine whether our findings extend to non-
Markov models of interacting ions.

Reversibility has been studied in various guises for at
least 80 years. [The principle of microscopic reversibility
was proposed by Tolman in 1924 (see [41]).] We suggest that
reversibility, when present, may be worth preserving, when
forming a discrete-state model from a continuous-state
model. A method for such discretization is described in Sec.
IV. Our motivation was to explicitly investigate a question
related to reversibility—namely, whether transit times are
equivalent in a nonreversible equilibrium with an ion-ion
interaction. It would be interesting to know if there are any
reasons related to numerical stability, for which reversibility
should be preserved in discretizing a model. Perhaps the fact
that the eigenvalues of reversible generators are real valued
offers an advantage.

Reversibility, if it could be established for a given chan-
nel, could be helpful to experimentalists. In particular, if
there is a significant frans-membrane potential, most of the
paths beginning at one side of the channel may be trans
paths, while most of the paths beginning at the other end
may be cis paths. Thus, it may be easier to isolate the transit
distribution by focusing measurement in one direction.

Accurately modeling transit times for ion channels is a
part of the puzzle of understanding the speed of communi-
cation within biological organisms. The fact that transit times
can be just as short for ions traversing against a potential as
with a potential may offer insights for system level analysis.
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APPENDIX A: EQUIVALENCE OF trans PATHS

The proof of proposition III.1 is provided in this appen-
dix. The proposition is renumbered A.1
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Proposition A.1. For any ye S;g, Pigl v]1=Pril Vyev)-
Proof. Note that

3 P'[3,Ty, < To]@ P'[7] (i) P[]
Prrlyl=—; ~ pl B iy
P Ty, <Tol P'Tyny <Tyl > Pvy]
Y eSir
@  pl
=+711, (A1)
> P[y]
Y eSig

where (a) follows because y implies Ty, <Ty; (b) follows
because all paths exit through one of the boundaries, so the
probability of exiting through the right boundary is simply
the sum over all those paths that exit through the right
boundary; and (c) follows because P'[¥]=P'[ylpyni1s 80
that py . in the numerator and denominator cancel each
other out. Similarly, for y e Sg;,

P'y]
Prlyl= ~ o (A2)
> PYy]
y/eSRL
Let
1, i=1,
V= U Pi2i-1Pi-1i .
P12P23" " Pi-2,i-1P 1,’ iel2, ... N}
Pii-1Pi-1,i-2"""P32P2,1
(A3)

Then Vip;;=V;p;; for all i,je{l,...,N}. This relation is

known as V symmetry [21] or as detailed balance [20]. If X
were conservative, then ¥ symmetry would imply that V is
proportional to the equilibrium distribution of X, and X

would be a reversible process [20,42].
Thus, for all i,j e{1,...,N},

V; y
L=l (Ad)
Vi pij

By the Markov property, the probability of a particular path

v of length m, given the initial state of the process is ), can
be expressed as

P =Pyl rins ™ Prs P Vst (A5)
Then,
Pl[)’] (i)plvylpyp'Yz o me_zva_lme_l»N
PN[ '}’rev] pN,'ym_lpym_l,'ym_z e py2,ylp'yl,l
_ PiyPyvivy " Py g Vi P Vi N
PyaPyyvn " Py 1PNy
(b) V71 V,/Z V%.H Vv Wy (A6)
Vi V71 V?’m-z V},mil v,

where (a) follows from by Eq. (A5) and (b) from Eq. (A4).
Let a:=Vy/V,. Then, Eq. (A6) becomes
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P'[yl=aP[y,,]. (A7)
Thus,
P ]<“> P'lyl P aP[yw] 9 PVl
LRLYI= = ;o ,
2 Pyl 2 aPly,] 2 P
Y €Sk Y €Sk Y eSgy
(d)
= PRL[‘}/rev]’

where (a) follows from Eq. (Al), (b) from Eq. (A7), (¢)
because the mapping of ye S;% to v,,, is a one-to-one and
onto mapping of S;» to Sg;, and (d) from Eq. (A2). O

APPENDIX B: SYMMETRIC DIFFUSIONS

The symmetry discussion presented in Sec. IV for one-
dimensional diffusions is extended to higher-dimensional
diffusions in this appendix.

Let B be an open connected subset of R™. An
m-dimensional diffusion on B has a backwards generator
which is a second-order differential operator of the form

&2(;5 +E Mia_d),

ij
(9)(:1' axj i 0".xi

L= E D

i,
such that D is a symmetric, positive-definite matrix-valued
function on B and w is a vector field on B. The generator can
be rewritten in a more symmetrical (as an operator) form as

d __ db _d¢
Lo=2—D;—+ 2 i
. ox; . Ox

ij
ax]' i

where

- aD..
MFMi—E —.
;0%

The vector field u specifies the infinitesimal drift of the pro-
cess, and 2D specifies the infinitesimal covariance of the
process.

In addition, the behavior of the diffusion at the boundary
dB of B must be specified, unless the diffusion cannot reach
the boundary, such as if B=R". Following Kent [21], we
shall assume that the boundary behavior is a mixture of de-
stroying and normal (relative to D~') reflection at the bound-
ary. Specifically, if & e dB, the outward normal (relative to
D7) vector n(€) is the outward-pointing vector such that
[n(&)]'D1(&)v=0 for all vectors v tangent to JB at & nor-
malized so that [n(£)]"D~!(&)n(€)=1. The boundary behavior
is specified by the following condition for a function f on B:

af+Bn-Vf=0 on dB, (B1)

where « and B are functions on JB with 0s=a=<1 and «
+B=1. If a=1, then the process is killed at the boundary
and the process is not conservative. If =0, the process is
reflected at the boundary and is therefore conservative.
Given a positive, twice continuously differentiable func-
tion v on B, the inner product of two functions ¢ and ¢ on B
relative to v is defined as (¢, @), =[piydvdx. The diffusion
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specified by £ and the boundary condition (B1) is said to be
symmetric with symmetry density v, or simply v symmetric,
if (L4, d),=(p, L), for all functions ¢ and ¢ on B satis-
fying the boundary condition (B1). That is, £, under the
boundary condition (B1), is a self-adjoint operator with re-
spect to the inner product (-, -),. Kolmogorov [24] initiated
the study of symmetric diffusion processes. Ikeda and Wa-
tanabe ([25], pp. 275-281) gave an elegant description of
Kolmogorov’s results in the framework of stochastic differ-
ential equations on manifolds. The paper of Kent [21] is
readable without much knowledge of differential geometry
and treats boundaries. Symmetric Markov processes are also
central in the study of Dirichlet forms, where the Dirichlet
form of a v-symmetric diffusion is the bilinear mapping

The diffusion process is time reversible if it is statistically
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the same when time runs backwards (which requires that the
chain be conservative and stationary). A stationary diffusion
with equilibrium density v and the boundary conditions de-
scribed is time reversible if and only if it is v symmetric
[21]. However, a diffusion with destroying (i.e., a nonconser-
vative diffusion) can also be v symmetric for some v.

Given the diffusion matrix D and a positive function v on
B, there is a unique choice of the drift vector field u for
which the diffusion is v symmetric [21,24,25]. Writing v in
the form v=aexp(—u), where « is a normalizing constant
and u is a twice continuously differentiable function on B,
the condition on the drift is u=(V-D)"=D-Vu or, equiva-
lently, i=—D-Vu. That is, v symmetry is equivalent to the
vector field & being the negative gradient, scaled by D, of a
potential function u.

[1] B. Eisenberg, Contemp. Phys. 39, 447 (1998).
[2] B. Hille, Ionic Channels of Excitable Membranes, 3nd ed.
(Sinauer Associates, Sunderland, MA, 2001).
[3] K. Cooper, E. Jakobsson, and P. Wolynes, Prog. Biophys. Mol.
Biol. 46, 51 (1985).
[4] S. Chung and S. Kuyucak, Biochim. Biophys. Acta 1565, 267
(2002).
[5] D. G. Levitt, J. Gen. Physiol. 113, 789 (1999).
[6] R. J. Mashi, J. Schnitzer, and E. Jakobsson, Biophys. J. 81,
2473 (2001).
[7] E. Jakobsson, Methods 14, 342 (1998).
[8] S. Kuyucak, O. S. Andersen, and S. Chung, Rep. Prog. Phys.
64, 1427 (2001).
[9] D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352
(1978).
[10] W. F. van Gusteren, H. J. C. Berendsen, and J. A. C. Rullmann,
Mol. Phys. 44, 69 (1981).
[11] W. F. van Gusteren and H. J. C. Berendsen, Mol. Phys. 45,
637 (1982).
[12] S. Bek and E. Jakobsson, Biophys. J. 66, 1028 (1994).
[13] B. Corry, S. Kuyucak, and S. Chung, Biophys. J. 78, 2364
(2000).
[14] D. G. Levitt, Biophys. J. 37, 575 (1982).
[15] D. G. Levitt, Annu. Rev. Biophys. Biophys. Chem. 15, 29
(1986).
[16] D. G. Levitt, Biophys. J. 59, 271 (1991).
[17] R. S. Eisenberg, M. M. Klosek, and Z. Schuss, J. Chem. Phys.
102, 1767 (1995).
[18] Z. Schuss, B. Nadler, and R. S. Eisenberg, Phys. Rev. E 64,
036116 (2001).
[19] E. Jakobsson and S. Chiu, Biophys. J. 52, 33 (1987).
[20] F. P. Kelly, Reversibility and Stochastic Networks (Wiley,
Chichester, 1979).
[21] J. Kent, Adv. Appl. Probab. 10, 819 (1978).
[22]]. Alvarez, Ph.D. thesis, University of Illinois at Urbana-
Champaign, 2004.
[23] A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov, J.

Chem. Phys. 119, 3943 (2003).

[24] A. Komogorov, Math. Ann. 113, 766 (1937).

[25] N. Tkeda and S. Watanabe, Stochastic Differential Equations
and Diffusion Processes (North-Holland, Amsterdam, 1981).

[26] S. N. Ethier and T. G. Kurtz, Markov Processes: Character-
ization and Convergence (Wiley, New York, 1986).

[27] H. J. Kushner, Approximation and Weak Convergence Methods
for Random Processes (MIT Press, Cambridge, MA, 1984).

[28] D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffu-
sion Processes (Springer-Verlag, New York, 1979).

[29] C. J. Thompson, Mathematical Statistical Mechanics (Prince-
ton University Press, Princeton, 1972).

[30] L. S. Liebovitch and J. M. Sullivan, Biophys. J. 52, 979
(1987).

[31] L. S. Liebovitch, J. Fischbarg, and J. P. Koniarek, J. Membr.
Sci. 84, 37 (1987).

[32] Z. J. Grzywna, L. S. Liebovitch, and Z. Siwy, J. Membr. Sci.
145, 253 (1993).

[33] S. J. Korn and R. Horn, Biophys. J. 54, 871 (1988).

[34] M. S. P. Sansom, F. G. Ball, C. J. Kerry, R. McGee, R. L.
Ramsey, and P. N. Usherwood, Biophys. J. 56, 1229 (1989).

[35] D. Petracchi, C. Ascoli, M. Barbi, S. Chillemi, M. Pellegrini,
and M. Pellegrino, J. Stat. Phys. 70, 393 (1993).

[36] J. Timmer and S. Klein, Phys. Rev. E 55, 3306 (1997).

[37] A. Fulifiski, Z. Grzywna, 1. Mellor, Z. Siwy, and P. N. R.
Usherwood, Phys. Rev. E 58, 919 (1998).

[38] Z. Siwy and A. Fulinski, Phys. Rev. Lett. 89, 158101 (2002).

[39] S. Mercik, K. Weron, and Z. Siwy, Phys. Rev. E 60, 7343
(1999).

[40] S. Mercik, Z. Siwy, and K. Weron, Physica A 276, 376 (2000).

[41] R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, New York, 1938).

[42]J. R. Norris, Markov Chains (Cambridge University Press,
Cambridge, England, 1999).

[43] M. Fukushima, Dirichlet Forms and Markov Processes
(North-Holland, Amsterdam, 1980).

046126-12



